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ABSTRACT

The linear stability of compressible plane Couette flow is investigated. The correct and
proper basic velocity and temperature distributions are perturbed by a small amplitude nor-
mal mode disturbance. The full small amplitude disturbance equations are solved numeri-
cally at finite Reynolds numbers, and the inviscid limit of these equations is then investigated
in sene detail. It is found that instability can occur, although the stability characteristics of
the flow are quite different from unbounded flows. The effects of viscosity are also calculated,
asymptotically, and shown to have a stabilizing role in all the cases investigated. Exceptional
regimes to the problem occur when the wavespeed of the disturbances approaches the ve-
locity of either of the walls, and these regimes are also analyzed in some detail. Finally, the
effect of imposing radiation-type boundary conditions on the upper (moving) wall (in place
of impermeability) is investigated, and shown to yield results common to both bounded and
unbounded flows.
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1. Introduction

Incompressible plane Couette flow possesses, perhaps, the simplest exact solution of the
Navier-Stokes equations, and, (probably as a consequence) the study of the stability of this
flow has been the subject of considerable attention over the years. Numerical studies of the
linear stability problem have been carried out by Grohne (1954), Gallagher and Mercer (1962,
1964), Deardorff (1963), Davey (1973), and Gallagher (1974); however, all these studies found
no evidence of instability. A number of analytic studies have also been carried out on this
problem. Wasow (1953) showed that the flow is stable at all streamwise numbers (a) if the
Reynolds number (Re) is sufficiently large. The stability of the flow at low Reynolds number

was demonstrated by Synge (1938). Dikii (1964) proved that all modes with wavespeeds equal
to the average of the wall velocities were stable and indeed that the imaginary component

of the wavespeed Im{c} < -a/Re. The first general proof of stability appears to be due to

Romanov (1973). He showed that all normal modes of the linear problem are damped for

a > 0, Re > 0. Exact solutions of the Orr-Sommerfeld equations have been obtained by
Reid (1979).

Another issue that has been studied is the question of a continuous spectrum. Case
(1960, 1961) showed that the time dependent inviscid problem has a continuous spectrum

which decays in time as l/t, this spectrum arising as a direct consequence of the singularity

of the inviscid equations at the critical layer. Shivamoggi (1982) presented an example of a

continuous spectrum which decayed as an exponential in time.
A detailed analysis of modes for the large Reynolds number limit for general mean flows is

given by Morawetz (1952), which has implications for plane Couette flow. She classified the
modes into three sets. In the first set are eigenvalues which approach the inviscid eigenvalues
in the limit of infinite Reynolds number. Since there are no discrete inviscid eigenvalues in

the case of plane Couette flow, this first set is empty. In the second set, there 's an infinity
of eigensolutions unrelated to the inviscid problem, satisfying

Ic- c'J < A(aRe)-, (1.1)

where A is a constant, and cn is a root of

Yl2 nir
I [iUo(y) - c.]'dy = 2 /eR (1,2)

where n is any integer, Uo(y) is the velocity profile, a is the wavenumber, and the flow
extends from y = y1 to y = Y2. These modes are always stable (if Re is sufficiently large).
In the third class are eigensolutions of the viscous problem that, as aRe -c c, approach a
finite V-shaped strip in c-space defined by one branch of 1

ryl 1I

Rl [i(Uo(y) - c)] dy = 0 (1.3)

and one branch of Data

Rl1 [i(Uo(y) - c)]Ydy = 0, C 1.4)
Y odes

where Uo(y,) = Rl{c}. These modes are either neutral or stable. or
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However, there doeG exist a dichotomy between the theoretical and computational results
described above and experimental results at large Reynolds numbers, in which instabilities
are certainly observed (Taylor 1936, Reichardt 1956, Robertson 1959). A number of attempts
have been made to explain this through the inclusion of nonlinear terms. Investigations of
this type include the wo'k of Watson (1960), Eckhaus (1965), Hains (1967), Kuwahara
(1967), Reynolds and Potter (1967), Ellingsen, Gjevik, and Palm (1970), and Lessen and
Cheifetz (1975). These studies u sed a variety of techniques, including varying degrees of
mathematical rigor, and led to a number of conclusions (some partly contradictory), although
on balance, the evidence was that finite amplitude effects could, indeed, destabilize the flow.
Additionally, Romanov (1973) considered the nonlinear initial-value problem and showed
that there is a unique solution which is asymptotically stable if the norm of the initial
disturbances in Sobolev space is sufficiently small.

The linear stability of compressible flows is considerably less well understood than corre-
sponding incompressible flows. Most of the work (which has for the most part been based on
the parallel mean flow assumption) has been with regard to boundary-layer flows (e.g., Lees
and Lin 1946, Mack 1963, 1965a,b, 1959, 1984, 1987, 1990) and more recently to jets and
shear layers (e.g., Tam and Hu 1989a,b, Greenough et al. 1988, Papageorgiou 1990, Jackson
and Grosch 1989, Mack 1990).

The first (of a number) of distinguishing features of the stability of compressible flows
was found by Lees n.nd Lin (1946). This relates to the replacement of the (classical) inflec-
tion point condition In the streamwise velocity profile (for the existence of neutral inviscid
modes). by the generalized inflection point (G.I.P.) condition which involves the mean den-
sity distribution also. This condition relates to the existence of neutral "inviscid" modes (i.e.,
modes of wavelength compr.i, ,, t the characteristic scales of the mean flow, for example
the displacement thickness in the case of boundary-layer flows, or lateral extent in the case
of confined flows).

Another effect of compressibility is the fr. Iuent existence of multiple modes of instability
in supersonic flows. In addition to the modes rJ. :t ed to the G.I.P., a further class of modes
may exist; these are linked to the so-called supersonic reut.al modes (as opposed to subsonic
neutral modes associated with G.I.P.'s). Such neutral modes are readily distinguishable,
because of the oo..illatory nature of the eigensolutions in the free sLream, while subsonic
neutral modes exhibit exponential decay of their eigensolutions in the free stream. Mack
(1963, 1965a,b, 1969, 1984, 1987, 1990) has shown how such modes are extremely important
in compressible boundary-layer flows, particularly in the case of boundary layers on cooled
walls, where these modes are often associated with the largest amplification rates. Such
modes have also been shown to exist and be important in other classes of flow by Tam
and Hu (1989), Greenough (1989), Zhuang, Kubota, and Dimotakis (1990) (confined two-
dimensional supersonic mixing layers), Macaraeg (1990), and by Jackson and Grosch (1989)
(compressible mixing layers). However, to date, a simple mechanism that explains why and
precisely under what conditions these types of mode exist has yet to be propounded. Some
general remarks concerning stability at large Reynolds numbers have been made, however,
by Morawetz (1959), in particular, the presence of inner viscous regions and their nature
was vigorously established in both the incompressible and compressible cases. In the caje

2



of stable dicturbances, with finite dalping. it was shown that a finite viscous region in
t'., interior of the fluid, no matter hoN' large the Reynolds number, exists. In the case
oi uaistable disturbances, with finite amplification, there is no inner viscous region if the
Reynolds number of the mean flow is large enough. In the case of neutral disturbances (for
constant Prandtl number) it was also rigorously shown that if a viscous region does exist,
its width shrinks to zero with an increase in Reynolds number.

The object of this study is to analyze some of the characteristics of compressible plane
Couette flow. Although analytic expressions for the mean streamwise velocity Uo(y) and
temperatun To(y) are not available for general viscosity laws. To(y) may be expressed as
a second-order polynomial in Uo(y), and hence it is relatively straightforward to generate
mean flow p: ofiles, under different conditions. Some work has previously been carried out
investigating the compressible stability of plane Couette flow. Glatzel (1989) has considered
this problem, and has carefully studied the least stable eigenmodes. He also derived critical
Reynolds numbrs for the instabilities that were found. However, this work is for the special
case of constant viscosities, density and pressure (implying constant temperature also), which
lead to a fourth-order system (rather than a sixth-order system). Girard (1988) considered
the same problem, and also assumed constant viscosities (although he did allow for variations
in density and temperature); instaoilities were again found to occur. In this paper, we choose
to consider the stability of the mean flow profile described above, which is a correct and
proper solution of the full compressible Navier-Stokes equations. We show that the details
of the mean flow profile have a profound effect on the stability of the flow.

The layout of the paper is as follows. In Section 2 we formulate the problem, stating
our fundamental assumptions and equations of motion. In Section 3 we derive the equations
of motion for the basic flow, in which the problem is reduced to that of a straightforward,
although nonlinear, first order system that may be solved by means of standard numerical
means. In Section 4 we derive the (full) small amplitude disturbance equations, neglecting
only terms in perturbation amplitude squared, and we describe a numerical scheme to t;eat
this system, together with a number of numerical results. In Section 5 we consider the
inviscid limit of these equations; we show how the so-called "generalized inflection point" is
relevant in this context, and under what circumstances we can expect such a point to occur
with our basic profile.

Numerical results for the inv;scid problem are presented in Section 6, and, most i npor-
tantly, it is shown that unstable modes are possible, although according to inviscid theory,
there are many regions where many modes are neutrally stable. Thease neutral modes are
investigated further in Section 7, in which the effects of viscosity are ilicluded, and shown
to always have a stabilizing role for high Reynolds numbers. However, this study also raises
important questions regarding the applicability of our results, in particular in regions of
changeover from the neutral to non-neutral state. This region is investigat,.d in some detail
in Section 8. Because of the apparent discrepancy in results between bounded and un-
bounded stability analyses, in Section 9 we consider a change in boundary conditions on the
upper (moving) wall, from one of impermeability to one of radiation. Finally, in Section 10
we present some conclusions.

3



2. Formulation

We assume that we have a curnpressible, Newtonian, perfect fl aid between two infinite
parallel planes defined by y* = 0 and y = h. The x'* axis is taken to lie in the plane of the
lower wall. We take the fluid to have density p', viscosity t*, second coefficient of viscosity
(* (which may be taken to be zero for a monotonic gas). The upper wall has velocity UC,
(a subscript oo refers to unperturbed conditions on the upper wall), taken parallel to the
plane of the wall, while the lower wall is at rest. Although the basic flow will be taken to
be one dimensional, later we shall consider two-dimensional perturbations of this flow. The
velocity components are taken to be u* = (u*, v*) in the x* and y* directions respectively, and
the pressure and temperature are written as p* and T* respectively. We non-dimensionalize
velocities with respect to b, lengthscales with respect to h, denity with respect to p o,
viccosities with respect to p*, temperature with respect to T, and pressure with respect

to p ,R*T , where the gas constant R* = Up - C,, and Cp and C, are the specific heats
at constant pressure and volume respectively; non-dimensional quantities are denoted using
the same notation as corresponding dimensional quantities, except without the superscript
asterisk.

The continuity equation may then be written

Op 0 a
+ (PU) + T(pv) = 0. (2.1)

Here, and throughout the paper, we assume that the appropriate dimensional timescale is
O(h/Uo).

The momentum equations are written

r [Ou O9U .9u1 1 Op
l t + UX +yj W0M Ix

(2.2)
a [2a 2k + AV -u +a u + v)

[Or Ov Ov y] 1 Op

(2.3)

Here the Reynolds number Re is defined by

Re = U p (2.4)

the Mach number Mo by

M.o = U.o/ yR*TI (2.5)

and the ratio of specific heats by -f.
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The non-dimensional form of the energy equation used isEOT +0+ 9T] _ (7-i\ [Op Op Opl 1 I I OT + [0 T]1
Tt O yj y j ~t Ox Oyj Re i0 T y J O V x a axJ

+2p(7-1)M.[ (u 2 +0v\ 2 + 1 O )2 + A (u i )2]II ' +1-1/ +-(-+-+. +N
Re [(X Tx, (OT/ 5-Oy Tx] (O Oy Tjj

(2.6)
Here a is the Prandtl number

= *Cp/K*, (2.7)

where K* is the coefficient of heat conductivity. The equation of state is simply

p = pT. (2.8)

We assume that viscosity depends solely on temperature, and in particular we assume Suther-
land's law

- 3/2 1+C), (2.9)

where C is a constant. Finally, A = - 2/3,u and the Stokes assumption 0 is assumed
throughout the paper.

In the following section we consider the basic flow which we expect to depend on y only.

3. Compressible Couette Flow

We seek a solution of (2.1) - (2.6) which is dependent on y only, together with a constant
mea. pressure. By continuity we must have v = 0. We then seek a solution of the form

u = Uo(y), T = To(y), A = yo(y). (3.1)

We then have
(p0Uy), = 0, (3.2)

[P.TY] + ( I)M.po(Uo N2 = 0, (3.3)

subject to
U(0) = 0, UO(1)=1, (3.4)
To(0) = T., To() = 1.

It follows immediately from (3.2) that the shear stress 7 is a constant through the profile,
i.e.,

7 = poU = constant. (3.5)

The energy equation may then be written as

[0 Toy + (-- 1)M. U07] = 0. (3.6)
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Defining the recovery temperature (i.e., the wall temperature with adiabatic conditions)
as

T, = 1 + (-aM, (3.7)
2

and the recovery factor
r T ,(3.8)

(3.6) may be integrated and w "itten in the form

To=T r + (1 -r)Uo - (1 -y-) U02}. (3.9)

Equations (3.5) and (3.9), together with an appropriate viscosity law (we used (2.9)) and
boundary conditions (3.4) then completely determine the problem; r is unknown a priori,
and must therefore be determined as part of an iterative process. The mean pressure profile
is constant.

4. The Small-Amplitude Disturbance Equations

Here we take the solution to be that of Couette flow (as discussed in the previous section)
together with a small amplitude perturbation. More specifically, we write

u = Uo(y) + 6ii(y)E + (6),
V = bai(y)E + 0(82),

p = 1 + Sp(y)E + 0(62),

p = po(y) + 6,(y)E + O(6), (4.1)
= /o(y) + 5p(y)E + o(62),

C = Co() + 6 (y)E + 0(62),

T = To(y) + 6T(y)E + 0(6 2),

where
E = exp [ia(x - ct)], (4.2)

and 6 is the (small) amplitude of the perturbation. If we take terms 0(6) in (2.1) - (2.3),
(2.6) we obtain the following full, small disturbance equations:

-ic + ipoi + iUo + po + Po6 = 0, (4.3)

po [-iacii + icUofi + aWUo] + 7- =

J-{2goa~ii + A(, [_..a2ii + iao,] + Po)y [iii, + icki. + po [iiyJV + icai] + AYUO1 + AOY1(4.4)

PO [_j2i, + ia2Uo3] + 'y

e {2poA, + 2 poyvy -i Aoy (iafi + -b) + Ao (ia i + O-) + o (jo ,- b2) + icpoy.
(4.5)
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po [-i, a + iaUoT + cr, Toy] - 1) i-iac + iaUo3] =

- {110TY + 1ojoYT + pTOY + j To - ao } (4.6)

± Re I , ± f (U, )2 + 2poiaUoy5}.

The perturbation equation of state is then

P5 = TOP+ YT. (4.7)

No-slip and impermeability conditions are applied to the velocity perturbations at both walls,
namely

fi(0) = fi(1) = 0(0) = 0(1) = 0. (4.8)

The temperature boundary conditions are T(I) = 0, while on the lower wall,

T(0) = 0 (4.9)

for a heated/cooled surface and
5- = 0 on y = (4.10)

for an insulated wall.
We now present results based on the full set of viscous compressible linearized equations,

i.e. (4.3)-(4.7) above.
The stability results are obtained from a spectral temporal linear stability code written

by Herbert (1990). The code assumes a global representation of all variables in appropriate
basis functions which can vary from varit.b'k to variable. The bdsis functions for the velocity
components satisfy the imposed boundary conditions. Velocity perturbations are set to zero
at y = 0 and y = 1. Thus, the velocity basis functions are linear combinations of Chebyshev
polynomials. In terms of the Chebyshev polynomials T,(y), these basis functions are defined
as

Un(Y) = T.+ 2(y) - T,(y). (4.11)

Boundary conditions for the density and temperature perturbations waves are of more general
nature, so these variables are represented as a standard Chebyshev series. In this section,
only adiabatic results are shown. Thus, the y derivative of the temperature perturbation is
zero at the lower wall. The upper wall is insulated; therefore the temperature perturbation
is set to zero. The density at the walls is obtained by integration of the continuity equation.

The numerical algorithm departs from standard collocation schemes which operate in
physical space. Taking the perturbation density (0) as an example, let

0(y) = Ea.T(y), (4.12)
n
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and its first derivative My()T = ad"v) (4.13)

dy dy

be evaluated at each collocation p, int. Inserting and the other variables into the linearized
stability equations leads to a system of 'near equations for the coefficients of the basis func-
tions. From these, one can either cac ulate a global spectrum using routines from the IMSL
library or obtain a single eigenvalue at a sequence of parameter values using a continuation
technique. Details are given in Hertxrt (1990).

Figures 1-5 all correspond to M : 2. The dependence of the eigenvalues of inviscid
character is shown in Figures 1 a-c which correspond to a = 0.05, 0.10 and 0.20 respectively,
all at Re = 2 x 10', and obtained with 100 collocation points. It is clear from the sequence of
figures that one inviscid eigenvalue is approximately stationary, while the remaining inviscid
eigenvalues originate from very large values of Rl{c} at very low a. A magnification of figure
lc (shown in figure ld) shows the regio;, of the spectrum corresponding to 0 < Rl{c} < 1.
One notes tne general "Y"shape of the spectrum as discussed by Morawetz (1952). The
spectrum is composed of three "Y" shaped pieces. These are due to the structure of the
viscous terms of the two momentum equations and the temperature equation. The coupling
between the equations and the non unit Prandtl nri mber leads to the non superposition of the
"Y" singular curves as Re -+ oo. Before drawing any general conclusions however, we show
spectra at Re = 7 x 101 in Figure 2, leaving all other parameters unchanged with respect to
Figure 1. As expected, higher resolution is required to properly resolve the spectrum. The
sequence of Figures 2a-d correspond to resolutions of 75, 100, 125 and 150 collocation points
respectively. Although Morawetz (1952) predicts that there is a set of "viscous" eigenvalues
which lie on the edges of the "V" part of the "Y", packed with a density proportional to
v 'R', it is clear that at Mo = 2, the triple point of the "Y" is cut off by two horizontal
bands of eigenvalues. The word horizontal is used here as a qualitative description. At
the lower resolution of N = 75, the bands are slightly wider then for higher N. It is not
completely clear whether these bands will remain or diszpear as N -+ oo. A definitive
answer would require further investigation into the properties of the viscous component of
the spectrum at high Reynods numbers and high Mach numbers. Comparing Figures 2b and
2d, it is clear that one effect of insufficient resolution is the splitting of the spectrum from
the vertical part of the "Y" (which is indicated by "I"). However, such a splitting is not
always indicative of loss of resolution (see Figure 5 at a = 0.1, Mo. = 5, Re = 2 x 10'). At
a = 3.5, Re = 7 x i0s, the horizontal bands become more evident (Figure 3). Note that the
density of eigenvalues along this band has increased significantly. Figure 4 shows a blow up
of the upper left hand corner of the stable diagram. The scales along Rl{c} and Im{c} are
identical to bring out the real shape of one of the "triple points". At N = 150, one notices
the left branch of the "Y" which is at the theoretical angle of 60'. As N changes from 125
to 150 nodes, the horizontal bands shift slightly in the direction of increased stability. Thus,
the final converged state of these bands is inconclusive for the chosen set of parameters.

We now turn our attention to a similar set of spectra at Mo = 5 which seem to exhibit
a more complex ch:.racter than their Moo = 2 counterparts. At Re = 2 x 106, a = 0.1, the
three "Y" shaped curves are clearly present. These structures subsist in an unmodified form
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(i.e., without the horizontal bands) at higher Reynolds numbers at the higher M.. One

"Y" is approximately symmetrical about the Rl{c} = 0.5 axis. The "I" structure has split

into three pieces, one along RZ{c} = 0.5, and the other two curves placed symmetrically
about Rl{c} = 0.5. The actual locus of points along these curves shows a similarity with
the continuous temporal boundary-layer spectra discussed in Ashpis and Erlebacher (1989).
As the Reynolds number is increased to 5 x 106, the resolution requirements simultaneously
increase. Only when the vertical locus of eigenvalues along Rl{c} = 0.5 appears, is the
resolution adequate, at least for the part of the spectra above it, although this statement is
not quite true near the horizontal bands. The unchanging vertical position of these bands
as N increases from 125 to 150 indicates that its presence is not an artifact of a loss of
resolution.

To complete the picture, Figures 7 and 8 show the spectra at M, = 5, a = 3.5 at
Re = 2 x 10' and Re = 7 x 101. In both cases some inviscid modes (those near the Im{c}
axis) have moved into the 0 < Rl{c} < 1 range. As each mode crosses Rl{c} = 0 or
Rl{c} = 1 regions, a critical layer develops; this is examined in Section 6. Once again, as
the Reynolds number increases, the width of the horizontal bands increases, and resolution
studies indicate that they do not disappear as N --+ oc.

In anticipation of the results presented in the following section3, we plot the evolution
of the mode I phase velocity (finite Rl{c} as a -- 0) as a function of a. This is carried
out for several resolutions and at two different 1Zeynolds numbers. Although inviscid theory
suggests stronger instabilities at M = 5. viscous calculations indicate that the resolution
requirements become much more severe. We therefore restrict ourselves to M(' = 2. Both
at Re = 7 x 10' and Re = 1.4 x 106. Im{c} exhibits a local maximum near a = 4. This
mode becomes less stable at higher Re, while a shifts to a slightly lower value. As expected,
a higher resolution is required at Re = 1.4 x 106 (N = 150), as opposed to N = 100 at
Re = 7 x 105 . Unfortunately, we are not able to increase Re beyond 1.4 X 106 and still obtain
accurate results at resolutions not exceeding N = 150. Figures 9 and 10 show the variation
of RIci and Rlc, for both Reynolds numbers. The phase velocity has been scaled by V'e to
bring out the one-half power scaling law. Further discussion of Figure 9 is deferred until the
asymptotic theory at large Re has been presented.

In the following several sections, we examine solutions of the stability problem in the
limit Re -- cc. Guided by a number of previous viscous theories, together with the work of

Morawetz (1952, 1959), we expect, in general, the solution to develop in the form

ft io(y) + Re-iil(y) + O(Re-'),

ov(y)+Re-2v1(y)+O(Re-'),

T = To() + Re-iT(y) + O(Re-1), (4.14)

= Po(y) + Re-P(y)+ O(Re-l),

co + Re-1c + O(Re-1).
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5. Inviscid Disturbance Equations

Taking equations (4.3) - (4.7), and then retaining lowest order terms in Re (see Mack
1984, for example), we obtain the following two first-order equations for the leading order
normal velocity ( = %) and pressure (i =o) perturbations respectively

Uo0ibo = ipo {To-MO,(Uo-c) 2} (5.1)Uo - CO 7M2 Uo - C (

ia 2

= --- (Uo - co)%O, (5.2)

where the appropriate boundary conditions to be applied to this system are

.6o(0) = io(1) = 0, (5.3)

implying

POY(0) = A(l) = 0, (5.4)

where co is the complex wave-speed of this system. Equations (5.1) and (5.2) may be
combined to yield the single second order equation (see for example Mack 1984, 1987)

d f (Uo- c)oy Uo,Ool =o 2 (AU-CO) (5.5)
dy To - M(U-o) J (O

for i o.
Before investigating any of the above systems numerically, it is interesting to study

the significance of so-called "generalized inflection points" which are found to be highly
significant in the context of compressible flows. If we multiply (5.5) by 0* (the complex
conjugate of io) and then subtract from the resulting equation its complex conjugate, the
following equation is obtained:

Uo - x f Uo - co dy 7* (

where

X = To- M(Uo - co)2, (5.7)

and a superscript asterisk here denotes a complex conjugate. After some algebra, this may
be written

°Tv0* J (5.8)

Writing
co = RI{co} + i Im{Co (5.9)

then the neu'.ral state corresponds to Im{co} -+ 0. In this limit, (5.8) may be written

10



'6000 - "fo~ __ 6o1 (y)2ri Un\Uoy~yj) oy)

Using arguments similar to those of Duck (1990), then (i) as Im{co} -. 0, the left-hand-side
of the equation is zero except possibly at yj (where Uo(y) =- RP{co}), (ii) the term in the
parentheses on the left-hand-side of (5.10) must be zero at both y = 0 and y = 1, while (iii)
the right-hand-side is clearly non-zero unless

d [oU, 1 = =0. (5.11)
dy I.To i=Y,

Thus, in order to avoid an inconsistency, we must have (5.11).
Most importantly, there does exist a difference between the present (bounded) flow con-

figuration, and that of unbounded flows, in that in the present situation, (5.11) is necessary
if

0 < Rl{co} < 1, (5.12)

i.e., a critical layer must exist inside the flow, while in the case of unbounded flows condition
(5.11) only holds if the wavespeed is "subsonic", i.e., 1 - 1/Mw < Rl{co} < 1 + 1/M,. This
is because (5.11) is a direct consequence of the zero velocity perturbations at the domain
boundaries. There is absolutely no distinction made here between supersonic and subsonic
modes. Thus any neutral inviscid mode satisfying (5.12) must be associated with a general-
ized inflection point. The above says nothing about neutral inviscid modes outside the range
of (5.12). It is also worth noting that authors who implement Dirichlet boundary conditions
(in place of radiation boundary conditions) on the disturbance terms in truncated infinite
domains, may well experience difficulties computing non-inflectional supersonic modes, since
the arguments above suggest that a generalized inflection point is necessary for supersonic
disturbances, a condition which is clearly erroneous in the unbounded case.

Utilizing (3.5) and (3.9) in (5.11) yields,

{oT [MOTTO + 901 = 0. (5.13)

If the term inside the square brackets is zero, then by Sutherland's law (2.9), we must
have

[3To + 5C]y=, = 0, (5.14)
which is clearly inadmissible. Consequently, the only way that a generalized inflection point
will occur is if the mean temperature profile has a local extremum. If we invoke Sutherland's
law and (3.9), then we either require

Uoy(y ) = 0, (5.15)

which is clearly not possible on account of (3.5), or

go(y,) = (1 - r)T(
2[T- 1'(5.16)
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Since Tr > 1, and the flow is unidirectional, then this condition cannot be satisfied unless

0 < UO(yi) < 1, (5.17)

which implies
1 - 2:1a M 2- 2 < r i, (5.18)
1 + 2:-1-aM 2

(implying that the lower wall must be cooled below adiabatic conditions).

6. Inviscid Disturbance Results

For this set of computations, the basic profile for velocity and temperature, namely Uo(y)
and To(y) was determined by means of a fourth-order Runge-Kutta scheme. The eigenvalue
problem posed in (5.1) - (5.4) was solved similarly, with Newton iteration being used to
update the complex wavespeed co so that all boundary conditions were satisfied.

In a number of computations (specifically those for which 0 < Rl{co} 1), it was found
necessary to deform the integration contour into the complex y plane (in particular below
the real y axis), in a manner described by Lees and Lin (1946). This was undertaken by two
independent ways. The first, as suggested by Mack (1965b), involves obtaining the mean flow
profile (Uo(y), To(y)) along the real y axis, and then using Taylor series expansions to obtain
the mean flow profile off the real y axis; this detour is made close to where Uo(y) = co. The
second approach (which was generally used in preference) obtains the mean flow solution
itself in the complex y plane, thereby eliminating the errors associated with truncation of
the Taylor series. Specifically, the mean flow was obtained for 0 < y y_ (i.e., on the real y
axis), yj < Y y1 - y2, Yi - iy2 < y :_ Y3 - iy2, y3 - iy2 < y y3 and thereafter back along
the real axis Y3 < y _< 1. Y1Y2,Y3 were all taken to be real and positive (although this is
not essential) and were chosen to avoid the computation proceeding too close to the critical
layer. Comparison of results using the two approaches proved a useful check of the accuracy
of our results. A further check on our results was that in addition to solving (5.1), (5.2) we
also solved the adjoint system (see (7.29), (7.30) below), and also (5.5).

The first results we present is for the case Mo = 2 and adiabatic lower wall boundary
conditions (here and in all cases we took -y = 1.4, a = 0.72 together with the Sutherland
constant C = 0.5). Results for Rl{co} are shown in Figure 11. The results display a number
of interesting features. There appear to be many modes, which, however, can be divided
into two distinct families, the first corresponding to Rl{co} > 1 as a -+ 0. All these modes,
with the exception of one (mode I) have Rl{co} -4 oo as a --+ 0; we refer to these as the
upper family. These modes all suffer a monotonic decrease in Rl{co} as a increases, and
the results suggest that some finite value is approached in the limit a -+ oo. The second
family is defined by Rl{co} < 0 as a .-- 0, and the Rl{co} all increase monotonically with an
increase in a, and eventually become positive. We refer to these modes as the lower family
of solutions. Again, all except the first of these modes (mode II) appear to be unbounded
as a -- 0.

A further, important feature is that in all cases for which Rl{co' > 1 or Rl{co} < 0, all
these modes are neutrally stable to within machine accuracy, i.e., Im{co} = 0. However,
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since there can be no generalized inflection point for the mean flow under consideration, then
there can be no neutral modes with 0 < co < 1. Indeed, it is found that in the case of the
upper family of solutions, once Rl{co} < 1, then these modes become stable according to
our inviscid calculations, while in the case of the lower family of solutions, once Rlfco} > 0,
then these modes become unstable according to our inviscid calculations; the location at
which Ri{co} either drops below 1 or rises above 0 is marked on Figure 11 by a circle. The
distribution of Im{co} for mode I is shown in Figure 12 (other upper family modes also
have negative values of Im{co}, but many orders of magnitude smaller). The distribution of
Imf{co} for mode II is shown in Figure 13 (other modes of the lower family have considerably
smaller values of Im{co}, although these are also positive). Next we go on to consider the
aforementioned trends as a --+ 0 suggested by our numerical results.

The existence and behavior of modes I and II as a -+ 0 is easy to confirm. If we set
a = 0 in (5.5), and integrate once, we obtain

(Uo - co) oy - Uoyo = K[To - M.(Vo - co)2], (6.1)

where K is an F.rbitrary constant. This equation may be integrated once more to yield

o = K(Uo - co) lo [To - M'(Uo - Co)21 dy.
= K(U(Vo-cc))

(UA - CO)Y (6.2)

If this is to satisfy the boundary condition on y = 1 (the boundary condition on y = 0 is
already satisfied by (6.2)), we must then have

fl TO dy= M . (6.3)

Jo (A U co)0

This relationship was solved for co (for given Uo(y), To(y), and M"O) and confirmed the
numerical results as a -- 0. Indeed, if we take a model problem, i.e.,

Uo(y) = y, To(y) = 1 (6.4)

then the solutions of (6.3) are

1 = [1 + 4/M ] 1/2  (6.5)

2

These modes will be discussed further in Section 7.
The behavior of modes III and higher as ae --+ 0 is different, but nonetheless straightfor-

ward to confirm. In these cases we have co --+ oo as a -+ 0, and a balancing of terms in (5.5)
in this limit demands

Co = a-1coo + 0(1), (6.6)

0 = 0o + 0(a). (6.7)

The equation for b0o is then

oy + cOM i°° = 0. (6.8)
To
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If, to make further progress analytically we assume IcOol > 1, implying we are focusing
attention on the higher nodes (alternatively we could assume the model problem, with To -
1), then the WKB solution is

VOO = ATo Ieio°°M. fo T /'dy-e-' c°oM foITo/I2dy} (6.9)

where A is a constant. Here the boundary condition on y = 0 has been applied, while the
other boundary condition on y = 1 demands

Coo = M fT/2dy (6.10)

where n is any (large) positive or negative integer. This expression clearly illustrates the
multiplicity of modes.

The second set of results we show is for the higher Mach number case M", = 5, with
the adiabatic boundary conditions on the lower wall retained. Figure 14 shows a number of
results for Rl{co}. Although these seem much the same as the corresponding distributions
for Moo = 2, there are some differences, in particular with mode IA, as defined in Figure
14, which initially corresponds to mode I in Figure 12. However, unlike the corresponding
results for Moo = 2, it turns out that there exist other (stable) modes in the vicinity of mode
IA. Some of these modes are shown in Figure 15 (on a magnified scale) and are denoted by
IB and Ic. These modes were difficult to generate numerically in regions of a where Ri{co}
was very close to unity and where the decay rates were quite small; however, the existence
of these modes was confirmed using the three different formulations of the inviscid stability
problem described above, together with the condition (6.3). Indeed, it is quite likely that
other such modes exist, although the present investigation failed to yield any. However, it
turns out that these modes are all stable, as shown in Figure 16. Note that modes IA and
Ic have, in places, values of co exceedingly close to each other, but nonetheless distinct; this
compounded the difficulty associated with these modes.

Modes II, and higher, on the other hand did exhibit the same qualitative behavior as the
corresponding Mo = 2 results. In particular, mode II becomes unstable at a C- 1.85, with
the distribution of Im{co} shown in Figure 17. Other higher modes of this lower family are
also unstable, but with substantially smaller growth rates.

The final set of results in this section relates to the case M,, = 5, as previously, but with
the (cooled-wall) boundary condition To(0) = 1. It is worth noting that even in this case, the
uniform temperature together with a linear velocity profile is still not a proper solution of
the governing equations, except in the very special limit as -1 --+ 1. Nonetheless, the solution
does have some important properties, namely that

TO(y) = T( - y), (6.11)

togcthcr with
Uo(Y) = 1 - Uo(1 - y). (6.12)

As a consequence of these symmetries, the mean flow has a single G.I.P. at y = , (with
U0 ( ) = W). These properties turn out to have interesting implications for the inviscid
stability of the profile.
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Figure 18 shows the variations of Rljco} for the first eight modes. As in the previous cases,
there again exist two distinct families, with all except two of the modes having the property
IRl{coH --+ oo as a -- 0. Furthermore, all modes are neutrally stable if Rl{co} < 0 or
Rl{co} > 1. Significantly, due to the aforementioned symmetries about y = , the behavior
of Rl{co} for the upper family of modes is merely the mirror image of the corresponding
lower family member about y = 1. These symmetries also yield the result that Im{co} is
precisely the same for corresponding modes at the same wavenumber. Figure 19 shows the
distribution of Im{co} for modes I and II. These modes begin as neutrally stable, then as
Rl{co} drops below unity/rises above zero, both modes become stable. As a increases still
further, both modes have Rl{co} -+ 1 which is reached at ae ; 5.5. Im{co} then becomes
positive, implying unstable modes. This is entirely consistent with our G.I.P. arguments,
which predict neutral modes having co = 1. Thereafter, Rl{co} for mode I increases, and
decreases for mode II.

Figure 20 shows the distribution of Im{co} for modes III and IV, which over the range
shown axe seen to be stable. It is possible that regions of instability exist for higher a,
although the computations become increasingly difficult as a -+ 00.

In the following section, we go on to consider regions where viscous effects are likely to
become important, particularly in determining the stability properties of the flow.

7. The Viscous Correction

The results described in the previous sections show that there is a family of solutions of
(5.1) - (5.4) comprising neutrally stable modes over a wide range of a, which have either
co > 1, or co < 0, and hence have no critical layer. The question then arises as to the effect of
viscosity on these modes - whether it plays a stabilizing or destabilizing role in this problem.
We investigate this question next.

The viscous correction to the problem arises due to the thin layers that occur as a result
of the violation of the no-slip condition (and also the temperature condition) on the walls
y = 0 and y = 1. These conditions are

u=v=0 on y=0andy=1, (7.1)

= 0 on y 1, while on y = 0,

- =0 (7.2)'9y

if the wall is insulated, and
T=0 (7.3)

if it is heated or cooled.
Now from (4.4) and (4.6) we see that on y = 0 we have

i0= TO(0)POM(0) (7.4)
-YM.CO'

and

to 7 1 To)1 (7.5)
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while on y = 1 we have
=To(1) o(1) (7.6)
7i )M£(co - 1)'

and

Thus, generally these expressions fail to satisfy the appropriate wall conditions described
above.

In order to remedy this, we require a (Stokes-like) layer of thickness O(Re-1) on both
walls. Considering first the layer on y = 0, defining

Y = yRe2 = 0(1), (7.8)

togethet with
= &(Y) + O(Re-2),

S= Re-V(Y) + O(Re-1),

= T(Y) + O(Re-1), (7.9)

= P(Y) + O(Re-),

/3 = (Y) + O(Re-2

then taking 0(1) terms in (4.3) - (4.7), we have

-iaco(" _cap

To(0) -/ILUyy(7.10)

Py =0, (7.11)
iU: 1-

-ico + + - f/ = 0, (7.12)

/ayy + (.z iacoPo = 0, (7.13)

To(0)

P = To(0)3 + T(0)' (7.14)

where PlL = 0(0). On account of (7.11) the pressure must be constant across this layer, and
so we write

P = o(0) = 3L. (7.15)

The solution to (7.10) is then

PLTo(0) e -'a0 )' Y(<1-06') (7.16)
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In the case of an insulated wall on y = 0, the temperature perturbation is given by (7.5)
across the layer (i.e., it is constant), while for the heated or cooled wall conditions, using
(7.13) we obtain

I ~ ~ 1/2 N

T = LT(O) 1- - , (7.17)

Using the continuity equation, (7.12), we obtain

V = OPLY - lOPL Y +- - PLO 1 00
1-L.TO (0)J

(7.13)
iPLTo(O) { 1 - ) '1

where b = 0 in the case of aii insulated wall, while b = 1 for a cooled/heated wall. The
corresponding layer on the ,,pper wall is quite similar. Defining the lengthscale

k" = (y - 1)Re2,

together with (7.9), then the results for Y = 0(1) may be simply inferred from those for
Y = 0(1) by (i) replacing 'Y' by '-k', (ii) replacing 'PL' by 'iPu' = P(1), (iii) replacing 'co'
by "co - 1" and (iv) replacing PL and To(0) by unity. Finally the (key) result for V is then
given by

= i(CO- 1)Puf'

-c( ){ [- 1) [ei(c-' I] } (7.19)

-I M U--) [-i( 1

We shall later require the behavior of (7.18) and (7.19) as Y -- oo and -- , -o,

respectively. We have 1)
- Y iCOPL-icoPL(77I

PL PL
7Aj2¢co }(7.20)

iCOPLb (01-1) iLO
+t + + hoO

-icycoa 2 jM2O[TO(O)IL
To (0 )L C To0).
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-0LY + OIL as Y - oo, (7.21)

and

-fM1'oi(C)-l)1 -- 1) -j-iC'(Co-l V'I M . CD-)) CO-) (7.22)

[-ia(co 1)]i _YM_ C_-1)[_i_ (Co_ -,))
I I
/2

--+ Oou + Olu as Y --+ -00. (7.23)

We now seek the leading-order viscous correction term to (5.1), (5.2) for y = 0(l),
using the expansions (4.14). The variables Ol and Pi turn out to be determined by an
inhomogeneous form of (5.1) and (5.2), namely

Uoi_ i~1  [To -M (Uo-CO)2 1v1YUo - Uo-co _ - cIRI, (7.24)

y +ia2M2 (Uo - Co)Ol = c1R 2 , (7.25)

where iM +To
Uo~,o 1 j +

(U - C-o)2 +7M 2(U o- o2 "' (7.26)

R2 = i(7.27)TO

The boundary conditions on this system are also inhomogeneous, namely

=(0) = V1L, (7.28)
01(1) = Vlu,

(the boundary conditions for Ply may be obtained from (7.25), although this is not necessary
for the following), where OIL and DIU are defined by (17.21) and (7.23) respectively.

To ob tain cl, we use the condition of solvability of the system (7.24) - (7.28). For this
we require the adjoint to the system; if we denote v+ and p+ as the adjoint functions, then
these are to be determined by

+ U°v + ia2(Uo - c)7M2 p+ = O, (7.29)Y+ U0o-o TO

p+___+ [T-M2(Uo-c)2 ]

.- co _ j - 0. (7.30)

The boundary conditions to be applied to this system are that

P+(0) = p+() = 0. (7.31)

c1 is then given by
-+( - OiiL(7.32)

cl "-- fo [RV + +/t21 +] dy
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where v+ and : are the complex conjugates to v+ and p+ respectively.
Given the nattire of the solution for v+ , p+, VlU, OIL, R, and R 2 when co is real, it is easy

to show that we must have
ci= 1mici±1+ i), (7.33)

where the positive sign is taken for co > 0, the negative sign is taken for co < 0; note
that Im{cl} > 0 for instability. However, in all the computations we performed, without
exception, we found Im{ci} < 0. Results for Im{ci} for the adiabatic case with M,,. 2
(modes I and II) are shown in Figure 21. The distribution becomes unbounded as a -0,

and also as a -+ a, the point at which co -+ 1 or 0; these distributions are typical of
all modes. Figure 22 shows the corresponding distributions for the adiabatic case with
M,, = 5, and exhibit, qua tatively, the same behavior. (The corresponding computation for
Aa = 5, To(0) = 1 was also carried out, and yielded qu?.litatively the same picture.) We
shall defer discussion of the limit a -+ a0 until the following section, but let us now consider
the limit as a -+ 0, of modes I and II from which it appears that our expansions cease to be
uniformly valid. This is most clearly seen by the apparently singular behavior of the viscous
correction to the complex wavespeed as a -- 0, together with the O(a- ) growth of the
wall-layer thickness in this limit (see (7.10) for example). Thus when a = O(Re- 1) the wall
layers will fill the entire channel, and the disturbances become purely viscous in nature.

Specifically, if we write
a= Re-lu, (7.34)

then the governing equations (4.3) - (4.6) reduce to

-i + ipoii + po3 + iUo + VPoy = 0, (7.35)

Zpo[-ici + iUoil + Uoy +] +
M£ 1.(7.36)

= POfiYY + Io0TUfO + p0TToyfi,

y = 0, (7.37)

"Fpo[-ic' + iUoT + iToy] - ( ) [iUo - i-ic]p

yo tPOT tyO (7T-38)
t°Tyy + ISTOty + TO0YY+ (3

+ToTTTy + TPOT(7 - 1)M YU2

where it has been implicitly assumed that viscosity is a function of temperature only. The
problem then reduces to a basically viscous system.

However, for modes III and higher, co = O(a- 1) as a -- 0, and since the Stokes layer
thickness remains O(R- ), it does not fill the entire channel. Additionally, as a --* 0,
Im{cl} = O(a-), apd so the expansions (4.14) remain valid.

Returning to Figure 9, we note the general excellent agreement between the values of
vR'JIm{c} obtained numerically, and Im{c} obtained from the above asymptotic theory,

19



for the case M = 2 (mode II). The values of q. obtained using the two approaches are
almost indistinguishable. We do note a deviation between the results as co -- 0, caused
by the (expected) breakdown in the asymptotic theory in this limit (and as co -+ 1). This
aspect is investigated in the following section.

8. The Nature of the Solution as cD -4 0 (or co -+ 1)

We consider here the nature of the comple). wavespeed as co -4 0 (the results for co -D 1
may be simply inferred from those of co -- 0). Our previous results indicate that as co -- 0,
(with a -- ao) then (i) cl, the viscous correction to the wavespeed becomes unbounded,
(ii) the leading order wavespeed co becomes non-neutral as a increases above ao, and (iii)
the thickness of the wall layer increases. Thus this region is likely to be a regime of some
interest, to which we now focus our attention.

More specifically, guided by our numerical results, if we write

a = ao + Cal, (8.1)

where
= Re-, (8.2)

then we expect

C = , + O(61). (8.3)

The solution in the "core," i.e., away from the wall layers is then expected to develop in the
form

0 6o(y) + 6,)l(y) + '",(8.4)

P POWy) + C(A ) +. -- (8.5)

The leading order system is then
^ Uo ')o ip o [To 2 U2

oU 0 o _ M U.] = 0 , (8.6)

or symbolically
£l{0, o} = 0, (8.7)

and 2 Uot = 0, (8.8)

or symbolically
,{0o,po} = 0, (8.9)

together with
,)o(0) = 0(1) = 0. (8.10)

Notice that (8.6) and (8.8) imply that Po = 0(y 3 ) as y - 0; this system effectIvely determines
the value(s) of ao for which co = 0. Turning to the next order system, we find

C IA Oel $P 0 [
UOip = _f+ 2 z-o MU0 C[o M1,U] = IR,, (8.11)
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42o 6140ToUTO - cIR 2 + aRIR 3. (8.12)

The bounddiry conditions to be applied to this system are

oj(1) = 0, ^1(0) = API(0), (8.13)

where A is to be determined later. Using conditions of solvability, we must have that

-+(0)AP 1 (0) - atl fJ 3V+d,f1 + + h3++dy ' (8.14)

where ^3+(y), O+(y) are the adjoint functions to (3.6), (8.8), namely those determined by
(7.29), (7.30) with ae = ao, co = 0.

We now consider the effect of the wall layers. The upper wall layer remains of thickness
O(Re-i) and as such play;s no role to this order. The interesting changes are related to the
lower wall layer, where now we must have

k = e-y = 0(1) (8.15)

as the crucial scale, wherein to leading order

(fis, ,/) = (fTo, 16o, A60). (8.16)

Taking the leading order terms in the continuity and momentum equations we find

iWo + Vk = 0, (8.17)

-Pok = 0, (8.18)

iao U(O) - -110o + a0oU(0) = &of- ioPo, (8.19)

with boundary conditions
Uo(O) = Vo(O) =0,

and as Y - oo.

0o -+ -iVOY(0), (8.20)

where the litter condition arises from a proper matching with the y = 0(1) solution. If we
now differentiate (8.19) with respect to Y, invoke (8.17) and (8.18) we find

fok - iao[U (O)Y - 311Uok = 0, (8.21)

whose solution is
U00, = CAi {[iaoUO(0)]3 (Y - Z,)1,

where C1 is a constant to be determined, and Z, = /U (O).
Utilizing the boundary condition on Y = 0, and also evaluating (8.19) on Y = 0 leads to

( iaofof' Ai{[iaoUO(0)]3(Y - Z1)}dY (8.22)
o = [iaoV'(O)]IAi'-[iioUo'(O)] -a}
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Vo may aow be determined by continuity (8.12) together with (8.20), and is given by

-Pof' f Ai{[iaoU(0)]1(Y -Z)}d"d(
[iaoU (0)j 1Ai'{ - [iaoU (0)] i, (

Correct matching with the core then requires

-[iaoUO(O)]'3- o j(o)ai'{-[icoUO(O)]'-d} (8.24)
a = o,,jc Ai{[iaoUO(0)]f (Y -- a)}d" (

together with
PO = P(0), (8.25)

and
- Yv 0 (Y)] -.. = 1(0). (8.26)

It is these conditions that then enable us to determine A(61) introduced previously,

a f. f0 Ai{[iaoUO(0)] (Y - "j)dd
[iaUO'(0)]* Ai'{-[ioU(0)]3"d} (

The procedure is then to determine a solution to (8.11), (8.12) consistent with (8.13), (8.14),
and (8.27). However, the problem for 1 is highly nonlinear, and as such is a difficult
numerical task. However, if we suppose la, 1 -- oo, then

-al fol h3P+dy
cl = f' f+ + 33+dy + 0(a-), (8.28)

fo [16+ + 2]d

which, on account of the nature of ^i+, 6+, A,, P 2, P 3 can be shown to be purely real to
leading order; indeed it is interesting to note that although this sytem does admit complex
values of 6, for ai = 0(1), it appears that the above fails to capture the non-neutc'al nature
of the inviscid modes for a > ao.

However, the reason for this is clearly illustrated by considering the nature of the inviscid
system (5.1) - (5.2) in the limit as a -- a0. Suppose that we set

a = ao + &, (8.29)

where
I&I < laol, (8.30)

then we expect expansions of the form
o= Oo + & -.&2 0+ 0(&3),

po =o± + & + &2P2 + 0(3),

Co = &^1 + & 2 + +0(&3). (8.31)
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The leading order system is
Ci {Oo, PO} = 0,

(8.32)
C2{0po} = 0,

(see (8.7), (8.9)), with
0o(0) = 6o(1) = 0. (8.33)

At the next order, 61 and P, are again determined by means of (8.12), although we shall
defer discussion of the boundary conditions to be applied to this system, and turn instead
to consideration of the Q(&2 ) terms. We find

U 2{2,.P2} U0 +OUoV 2  Uo0 12 1  Pl2l _ 2

+ - 2+ [To - MoU2] + 2M2Uoc} + 2M,201p(.

R,,

i ^ 2iao,, , 2iao~l 60 a.
12{V2,P2} =- -- oic0- +ia 0  - o 1-C61 - ct0o

T0 T(8.35)

= Rb.

However, the expansions above are not uniformly valid as y -- 0, since Uo(y) = 0(y)
in this limit, and hence a breakdown to our approximations must occur, specifically when
y = O(&). If we set

y = &Y, =O(1), (8.36)

then 0o develops in the following manner (that may be demonstrated to be correct a poste-
riori)

% = d4o(Y) + &2 1n& 1 (V) "+ &2 
2(Y) +"" (8.37)

It is simple to show that
)= Koyv, (8.38)

C1

where Ko is some constant; this is consistent with (8.33). We shall defer discussion of @D(F)
until later, while p2('Y) is given by

"k2 _ Uo(0)'D2  KTo(O) + K0VT[(0)
[(0)V - 1 PUO(0)Y- 1]2 [U (0)Y -F i] To(0)[U (0)Y - ^ ]2

621'(016(0) _ 1UO'(0)F
2 K0  (8.39)

1' o O) j[0 Oy-6]2

where K1 is a constant.
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Asymptotic analysis of (8.39) reveals that as F -+ oo

4 , AoFnY+ A 17+ A2 1In1+ A3 +..., (8.40)

where the Ai are all constants. It is easy to show (see below) that

o= KoT (0) Ug'(O)Ko^ (8.41)
A 0U0(0)To(0) [U (0)]2

H ).,ever, if 02 is to make a proper match with the Y = 0(1) region, we must have

11 = Ao[U(0)]VF. (8.42)

It turns out that the logarithms are crucial for the generation of non-neutral values of
co. The solution of (8.39) may be written

SA0UU(0)[U(0)- - ] d + (8.43)

[Uy 0)V - 61]

= A0[U (0) - 41]ln [ U (O)Y' +', (8.44)

where we have only retained terms which are of immediate concern. The crucial significance
of (8.44) is the presence of the +i7r jump in the value of the logarithm (Mack, 1984, for
example), as the point V = I/U(O) is traversed; it is this that generates an imaginary
component to <2, given as Y -+ oo by

2 Aor[U (O)y - col, (8.45)

(here and below a superscript 'i' denotes an imaginary component).
Returning to our discussion of the core region, we see we must have that

01(0) = 01(l) = 0, (8.46)

and consequently 4l is determined by the expression (8.14), with A = 0. On account of the
nature of 1, R2, P 3, VA+,p+ we expect 4^ to be a real quantity.

We are now in a position to specify the following boundary conditions

V2(1) = 0, 0'(O) = -Aoi7r, (8.47)

and thus e may be determined, in principle, by means of the condition

fl[R+ + R p]dy = (0)Aogir, (8.48)

where superscript 'r' denotes a real part.
Unfortunately, we see from (8.41), that A0 is dependent upon T (0) and Ug'(0), and since

both these quantities are zero in the case of an adiabatic lower wall, then in this case we

must consider the expressions (8.31) up to O(&3) in order to determine a value for the
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imaginary component of the wavespeed as & 0 0; however, since the genei'al technique is
well established above, we do not carry this out in this paper.

The key result, therefore, is then that Im{co} is O(&2) in general (but 0(& 3 ) in the
insulated wall case), and as a consequence we do not expect to obtain non-neutral values of
1, from (8.14) as al - oo (this would only be expected in a study of the 0( 2 ) terms of

the c expansion, in general, and the O(e 3 ) terms in the case of an insulated lower wall). The
above also clearly illustrates how co is only complex for values of a > ao, since for a < a 0
the 'jump' in the value of the logarithm is not present.

9. A Change of Boundary Conditions

It is curious that the (confined) flow profile under consideration in this paper has such
different stability characteristics from those of the (external) boundary layer. This leads us
to question the nature of these fundamental differences.

One obvious candidate for investigation is the effect of the boundedness of the domain
(i.e., the impermeability condition imposed on two walls). In an attempt to assess this effect,
we considered the problem where the impermeability constraint on the upper wall (y = 1), is
replaced by one of radiation, while retaining the same basic profile. Specifically, we replace
(5.3) by

i%(0) = 0, (9.1)

(as before), but with
+  = ony=1, (9.2)

where
V = ±a[C - M,(1 - Co)2]2 .  (9.3)

Here the sign of v t, chosen to ensure that Rl{v} > 0. Indeed this amounts to considering
the piecewise continuous flow which consists of our basic Couette flow for 0 < y < 1, and
uniform flow (Uo(y) = To(y) = 1) over 1 < y < oo. This may be shown using the arguments
used by Drazin and Reid (1981) who considered incompressible piecewise linear velocity
profiles and imposed continuity of pressure at y = 1.

The system defined by (5.1) - (5.2), (9.1) - (9.2) is solved numerically by the techniques
used in obtaining the results of Section 6 (i.e., a Runge-Kutta shooting scheme in conjunction
with a Newton iteration scheme to iterate on co).

Results for one example were obtained, namely for M,, = 2, with adiabatic conditions on
the temperature at y = 0. Results for Rl{co} are shown in Figure 23. Two modes were found,
the first (mode I) originates at a = 0, with a wavespeed co = 1 - 1/MO" = 0.5, and as such
is typical of so-called "first modes" observed in supersonic boundary I- --r stability studies
(e.g., Mack, 1987). Mode II, on the other hand, originates with a wavespeed co Z 1.48,
and consequently is more typical of the bounded flow modes observed in previous sections
of this paper. Figure 24 shows the variation of Im{co} with a. Mode I is unstable over the
entire range of a shown, while mode II is neutrally stable up to a ; 3.5, at which point
Rl{co} drops below unity, and Im{col becomes negative, indicating a stable mode. We
were unable to find other modes over the range of a considered, particularly modes with
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Rl{co} < 0. Thus it appears that the imposition of radiation type boundary conditions
results in a hybrid situation, with stability characteristics similar to those found in both
bounded and unbounded flows.

10. Conclusions

In this paper, we considered the linear stability of compressible plane Couette flow. Our
numerical results of the full governing equations are clearly in agreement with the predictions
of Morawetz (1952, 1954), and also there is a qualitative agreement with the work of Glatzel
(1989), although the latter author considered a model basic flow.

The main thrust of this paper has been directed towards modes which have been pre-
dominantly inviscid in nature. It appears that these are the most important, since they may
become unstable, while our studies indicate that viscosity plays a generally stabilizing role,
throughout.

The expansions of the assumed form (4.11) are typical of solutions which are predom-
inantly inviscid, but have viscous corrections (see also Morawetz 1952). In Section 8 we
studied the important regimes where co -+ 0 (or co -+ 1) in which the first two terms in
the series become comparable, a critical layer forms clhse to one of the walls, and the vis-
cous layer thickens to O(Re ). These are the "exceptional" cases referred to by Morawetz
(1952).

In Section 9, it was shown how, to a large extent, it is the boundary conditions imposed
on disturbances, that determines the nature of the stability of the flow. Indeed, earlier in the
paper, in Section 4 it was shown in the study of the G.I.P. condition that it is important to
impose correct (i.e., radiation type) boundary conditions in the case of unbounded flows to
avoid the (erroneous) requirement that a G.I.P. is necessary for the existence of supersonic
neutral modes.
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Figure 1: Spectrum at Mo, = 2, Re = 2 x 105, at 100pts. (a) a = 0.05, (b) a = 0.10, (c)
ca = 0.20 and (d) blowup of Figure lb.
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Figure 2: Phase velocity spectrum at M. = 2, ce = 0.1, Re = 7 x 10,. (a) 75 pts, (b) 100
pts, (c) 125 pts, (d) 150 pts.
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Figure 3: Phase velocity spectrum at Mo 2, a = 3.5, Re = 7 x 105. (a) 75 pts, (b) 100
pts, (c) 125 pts, (d) 150 pts.
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Figure 4: Blow up of Figure 3. Same parameters as Figure 3.
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Figure 5: Phase velocity spectrum at M. = 5, c = 0.1, Re = 2 x 106. (a) 100 pts, (b) 125
pts, (c) 150 pts.
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Figure 7: Phase velocity spectrum at M, = 5, a = 3.5, Re = 2 x 105. (a) 100 pts, (b) 125
pts, (c) 150 pts.
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Figure 8: Phase velocity spectrum at Mo = 5, ce = 3.5, Re = 7 x 10'. (a) 75 pts, (b) 100
pts, (c) 125 pts, (d) 150 pts.
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theory.
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Figure 11: Rl1co} as a function of a for Moo= 2, adiabatic lower wall.
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Figure 12: Im~co} as a function of ce for M.0 2, adiabatic lower wall, mode I.
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Figure 13: Imf co} as a function of a for M. 2, adiabatic lower wall, mode IL.
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Figure 14: Rl1co} as a function of ci for M,, 5, adiabatic k"' '-r wall, mode II.
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Figure 15: Rlf co) as a function of a for MO,, 5, adiabatic lower wall, modes IA, 18, 1C.
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Figure 16: Imfco} as a function of a for M. 5, adiabatic lower wall, modes IA, 'B, IC.
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Figure 17: Imfco} as a function of a for M.,, 5, adiabatic lower wall, mode II.
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Figure 19: Imfco} as a function of a for M,,, 5, T(O) =1, modes I and II.
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Figure 20: Im{co} as a function of a for M. 5, T(0) =1, modes III and IV.
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